The syntrophin-dystrobrevin subcomplex in human neuromuscular disorders.
نویسندگان
چکیده
The syntrophins and alpha-dystrobrevin form a subcomplex with dystrophin at the skeletal muscle membrane, and are also highly concentrated at the neuromuscular synapse. Here we demonstrate that the different syntrophins and alpha-dystrobrevin isoforms have distinct expression patterns during human skeletal muscle development, and are differentially affected by loss of dystrophin anchorage and denervation in human neuromuscular disease. During normal fetal development, and in Duchenne muscular dystrophy and denervation disorders, alpha1-syntrophin and alpha-dystrobrevin are absent or markedly reduced at the sarcolemmal membrane. beta1-Syntrophin is the predominant syntrophin isoform expressed at the muscle membrane during development, and it undergoes upregulation in response to loss of alpha1-syntrophin in Duchenne muscular dystrophy and in denervation. Upregulation of beta1-syntrophin in neuromuscular disorders is associated with re-expression of the fetal nicotinic acetylcholine receptor gamma-subunit, cardiac actin, and neonatal myosin, suggesting reversion of muscle fibers to an immature phenotype. We show that denervation specifically affects expression of the syntrophin-dystrobrevin subcomplex and does not affect levels or localization of other members of the dystrophin-associated protein complex. Our results confirm that dystrophin is required for anchorage of the syntrophin-dystrobrevin subcomplex and suggest that expression of the syntrophin-dystrobrevin complex may be independently regulated through neuromuscular transmission.
منابع مشابه
Spatial distribution and molecular dynamics of dystrophin glycoprotein components at the neuromuscular junction in vivo.
A bimolecular fluorescence complementation (BiFC) approach was used to study the molecular interactions between different components of the postsynaptic protein complex at the neuromuscular junction of living mice. We show that rapsyn forms complex with both α-dystrobrevin and α-syntrophin at the crests of junctional folds. The linkage of rapsyn to α-syntrophin and/or α-dystrobrevin is mediated...
متن کاملAlternative splicing of dystrobrevin regulates the stoichiometry of syntrophin binding to the dystrophin protein complex
Dystrophin coordinates the assembly of a complex of structural and signalling proteins that is required for normal muscle function. A key component of the dystrophin-associated protein complex (DPC) is alpha-dystrobrevin, a dystrophin-related and -associated protein whose absence results in muscular dystrophy and neuromuscular junction defects [1,2]. The current model of the DPC predicts that d...
متن کاملDifferential Association of Syntrophin Pairs with the Dystrophin Complex
The syntrophins are a multigene family of intracellular dystrophin-associated proteins comprising three isoforms, alpha1, beta1, and beta2. Based on their domain organization and association with neuronal nitric oxide synthase, syntrophins are thought to function as modular adapters that recruit signaling proteins to the membrane via association with the dystrophin complex. Using sequences deri...
متن کاملAbsence of α-Syntrophin Leads to Structurally Aberrant Neuromuscular Synapses Deficient in Utrophin
The syntrophins are a family of structurally related proteins that contain multiple protein interaction motifs. Syntrophins associate directly with dystrophin, the product of the Duchenne muscular dystrophy locus, and its homologues. We have generated alpha-syntrophin null mice by targeted gene disruption to test the function of this association. The alpha-Syn(-/)- mice show no evidence of myop...
متن کاملAssembly of the Dystrophin-Associated Protein Complex Does Not Require the Dystrophin Cooh-Terminal Domain
Dystrophin is a multidomain protein that links the actin cytoskeleton to laminin in the extracellular matrix through the dystrophin associated protein (DAP) complex. The COOH-terminal domain of dystrophin binds to two components of the DAP complex, syntrophin and dystrobrevin. To understand the role of syntrophin and dystrobrevin, we previously generated a series of transgenic mouse lines expre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neuropathology and experimental neurology
دوره 64 4 شماره
صفحات -
تاریخ انتشار 2005